Abstract

A pilot-scale anaerobic membrane bioreactor (AnMBR) integrated with a one-stage partial nitritation-anammox (PN/A) reactor was operated for the treatment of municipal wastewater (MWW) at seasonal temperatures of 15–25 °C. The removal efficiencies of COD and total nitrogen (TN) were always > 90% and > 75% respectively. The methanogenesis and PN/A were identified as the primary removal pathways of COD and TN, respectively, and were suppressed at low temperatures. With the temperature dropped from 25 °C to 20 °C to 15 °C, the methane-accounted COD decreased from 63.1% to 59.6% to 48.4%, and the PN/A-accounted TN decreased from 58.1% to 51.7% to 45.3%. The AnMBR and PN/A mutually complement each other in this combined process, as the AnMBR removed 8.5%-16.1% of TN by sludge entrainment and the PN/A reactor removed 2.6%-3.4% of COD by denitrification and aerobic oxidation. These results highlighted the strong feasibility of applying the AnMBR-PN/A process to the treatment of MWW in temperate climate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.