Abstract

Three artificial neural network (ANN) methods, namely, multilayer perceptron (MLP), radial basis function (RBF) and generalized regression neural network (GRNN) are utilized to predict the seasonal tropical cyclone (TC) activity over the north Indian Ocean (NIO) during the post-monsoon season (October, November, December). The frequency of TC and large-scale climate variables derived from NCEP/NCAR reanalysis dataset of resolution 2.5° × 2.5° were analyzed for the period 1971–2013. Data for the years 1971–2002 were used for the development of the models, which were tested with independent sample data for the year 2003–2013. Using the correlation analysis, the five large-scale climate variables, namely, geopotential height at 500 hPa, relative humidity at 500 hPa, sea-level pressure, zonal wind at 700 hPa and 200 hPa for the preceding month September, are selected as potential predictors of the post-monsoon season TC activity. The result reveals that all the three different ANN methods are able to provide satisfactory forecast in terms of the various metrics, such as root mean-square error (RMSE), standard deviation (SD), correlation coefficient (r), and bias and index of agreement (d). Additionally, leave-one-out cross validation (LOOCV) method is also performed and the forecast skill is evaluated. The results show that the MLP model is found to be superior to the other two models (RBF, GRNN). The (MLP) is expected to be very useful to operational forecasters for prediction of TC activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.