Abstract

AbstractSea ice is a central part of the Arctic climate system, and its changes have a significant impact on the Earth's climate. Yet, its state, especially in summer, is not fully understood and correctly predicted in dynamical forecast systems. In this study, the seasonal prediction skill of Arctic sea ice is investigated in a high‐resolution dynamical forecast system, the China Meteorological Administration Climate Prediction System (CMA‐CPSv3). A 7‐month‐long retrospective forecast is made every other month from 2001 to 2021. Employing the anomaly correlation coefficient as the metric of the prediction skill, we show that CMA‐CPSv3 can predict regional Arctic sea ice extent and sea ice thickness up to 7 lead months. The Bering Sea exhibits the highest prediction skill among the 14 Arctic subregions. CMA‐CPSv3 outperforms the anomaly persistence forecast in the Bering Sea, Sea of Okhotsk, Laptev Sea, and East Siberian Sea. The sources of the sea ice prediction skill partly come from the good performance of upper ocean temperature in CMA‐CPSv3. This holds true not only for winter sea ice in the Arctic marginal seas but also for summer sea ice in several Arctic central seas. Furthermore, CMA‐CPSv3 exhibits a strong relationship between the variability of sea ice and surface heat fluxes. This underscores the importance of enhancing the representation of air‐sea heat exchanges in dynamical forecast systems to improve the prediction skill of sea ice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.