Abstract

Deciduous fruit trees undergo endo-dormancy during fall at which time they also attain maximum cold hardiness (CH). Because these two processes occur simultaneously it is difficult to study them independently. We have been able to overcome this limitation with the use of genetically related (sibling) deciduous and evergreen peach trees. Using this system we conducted a time course study to characterize the seasonal fluctuations in CH and proteins in bark and xylem tissues. Cold hardiness (LT50) was assessed using electrolyte leakage method. Polypeptides were separated using SDS-PAGE. The data indicated that 1) CH of bark increased from -5°C (in August) to -49°C (in January) and from -3°C to -22°C for deciduous and evergreen trees, respectively. In January, under favorable conditions, evergreen trees were actively growing. 2) CH of xylem successively increased from -11°C to -36°C in deciduous trees and from -7°C to -16°C (in November) in evergreen trees and then plateaued. 3) LT50 of xylem in both genotypes closely approximated the mid-point of low temperature exotherms determined by differential thermal analysis. 4) As CH increased several qualitative and quantitative differences in polypeptides were noted between two genotypes. These changes during cold acclimation will be compared with those during de-acclimation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call