Abstract
In this study, the fate of organophosphate esters (OPEs) in conventional and advanced drinking water treatment plants (DWTPs) was investigated in field scale. In addition, the risk of OPEs by drinking water was assessed. The average total OPE concentrations in raw and treated water were lower in the rainy season (94.3 and 57.1 ng/L, respectively) than dry season (163 and 84.2 ng/L, respectively). Advanced DWTPs showed better removal efficiencies of major OPEs rather than those in conventional DWTPs. The average removal rates for two chlorinated OPEs, including tris(2-chloroethyl)phosphate (TCEP) and tris(1-chloro-2-propyl)phosphate (TCIPP), were negative (TCEP: −87%, TCIPP: −41%) for a conventional DWTP but positive (TCEP: 46%, TCIPP: 49%) for advanced DWTPs using granular activated carbon filtration. The average removal rates for advanced DWTPs were statistically higher for the alkyl/aryl OPEs, tri-n-butyl phosphate (TNBP: 67%) and tris(2-butoxyethyl) phosphate (TBOEP: 63%), than those for the conventional DWTPs (TNBP: 21%, TBOEP: 25%). The hazardous quotient (HQ) of major OPEs were lower for advanced DWTPs and water irrigated from upstream sties/reservoir compared to that of conventional DWTPs and water irrigated from downstream sites. We believe that this is the first comparison of OPE removal efficiencies achieved in conventional and advanced DWTPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.