Abstract

Instrumental and proxy records indicate remarkable global climate variability over the last millennium, influenced by solar irradiance, Earth’s orbital parameters, volcanic eruptions and human activities. Numerical model simulations and proxy data suggest an enhanced Asian summer monsoon during the Medieval Warm Period (MWP) compared to the Little Ice Age (LIA). Using multiple climate model simulations, we show that anomalous seasonal insolation over the Northern Hemisphere due to a long cycle of orbital parameters results in a modulation of the Asian summer monsoon transition between the MWP and LIA. Ten climate model simulations prescribing historical radiative forcing that includes orbital parameters consistently reproduce an enhanced MWP Asian monsoon in late summer and a weakened monsoon in early summer. Weakened, then enhanced Northern Hemisphere insolation before and after June leads to a seasonally asymmetric temperature response over the Eurasian continent, resulting in a seasonal reversal of the signs of MWP–LIA anomalies in land–sea thermal contrast, atmospheric circulation, and rainfall from early to late summer. This seasonal asymmetry in monsoon response is consistently found among the different climate models and is reproduced by an idealized model simulation forced solely by orbital parameters. The results of this study indicate that slow variation in the Earth’s orbital parameters contributes to centennial variability in the Asian monsoon transition.

Highlights

  • The last millennium, from 850 A.D. to the present, is a key period in understanding Earth’s climate response to external forcing and its internal variability on decadal-to-centennial timescales (e.g., Crowley 2000; Jones et al 2009; PAGES 2k Consortium 2013; Smerdon and Pollack 2016)

  • Asymmetric response in Paleoclimate Modelling Intercomparison Project Phase 3 (PMIP3) model simulations we compare the seasonal evolutions of the Asian monsoons during the Medieval Warm Period (MWP) and Little Ice Age (LIA) simulated in multiple PMIP3 models

  • In the 10-model ensemble mean, ASO rainfall is more active over Asia during the MWP than during the LIA (Fig. 2b), similar to June–July–August (JJA) mean anomalies shown in previous studies (Man et al 2012; Shi et al, 2016a)

Read more

Summary

Introduction

The last millennium, from 850 A.D. to the present, is a key period in understanding Earth’s climate response to external forcing and its internal variability on decadal-to-centennial timescales (e.g., Crowley 2000; Jones et al 2009; PAGES 2k Consortium 2013; Smerdon and Pollack 2016). Effects of orbital forcing In the previous section, we showed that there is consistent seasonal reversal of sign in ML anomalies in precipitation, atmospheric circulation, and continental-scale tropospheric temperature among the PMIP3 models.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.