Abstract
The coexistence of different microbial communities is fundamental to the sustainability of many ecosystems, yet our understanding of the relationships among microbial communities in plateau cold-region lakes affected by seasonal ice cover remains limited. This research involved investigating three lakes in the Inner Mongolia segment of the Yellow River basin during frozen and unfrozen periods in two habitats: water bodies and sediments. The research examined the composition and function of bacteria, archaea, and fungi across different times and habitats within the basin, their response to environmental variables in water and sediment, and inter-domain interactions between bacteria-archaea and bacteria-fungi were compared using interdomain ecological network (IDEN). The findings indicate significant variations in the structures of bacterial, archaeal, and fungal communities across different periods and habitats, with the pH of the water body being a crucial environmental variable affecting microbial community composition. In the frozen period, the functionality of microbial communities, especially in terms of energy metabolism, was significantly impacted, with water bodies experiencing more pronounced effects than sediments. Archaea and fungi significantly contribute to the stability of bacterial communities across various habitats, especially in ice-covered conditions, where stronger associations between bacterial communities, archaea, and fungi promote the microbial communities' adaptability to cold stress. Furthermore, our results indicate that the primary environmental variable influencing the structure of IDENs is the nutrient salt content in both water bodies and sediments. This study broadens our understanding of the responses and feedback mechanisms of inter-domain microbial interactions in lakes influenced by seasonal ice cover.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have