Abstract

Although significantly impacted, Guanabara Bay (GB), located in southeastern Brazil, is still an important fishery source for the state of Rio de Janeiro. Hg contamination, in particular, is of concern in the area and should be regularly monitored, as Hg bioaccumulation and biomagnification processes may lead public health risks to the local human population due to the consumption of contaminated food items, such as crabs. In this context, the aim of the present study was to determine total Hg (THg) concentrations in swimming crabs from three GB areas and investigate the influence of biotic and abiotic factors on Hg concentrations at the beginning and the end of the rainy season. Crabs and water samples were obtained from three areas, inside the bay, at the mouth of the bay and outside the bay. A clear rainfall effect on the investigated abiotic variables was observed, with increased rainfall and temperatures noted at the end of the study period. Significant statistical correlations were observed between THg concentrations and the assessed abiotic variables at the three study points at the beginning and end of the rainy season. The rainy season was noted as directly affecting THg concentrations at Guanabara Bay and, consequently, swimming crab THg contents. THg concentrations in swimming crabs at Urca and at the Cagarras Islands were higher at the beginning of the rainy season compared to the end, while the opposite was observed for the sampling point outside the bay. Higher Hg concentrations were detected at the outermost point of the bay in relation to the Cagarras Islands, probably due to the local upwelling event. THg values in Callinectes sp. were higher than concentrations reported for other areas in Brazil but lower than other reports worldwide. Calculated THg intakes surpassed the maximum National Research Council permissible limits of 0.049mg/week at all sampling stations during both seasons, raising public health concerns. Further research for longer monitoring periods during different seasons are essential to ascertain which climatic period is most critical regarding Hg availability at this anthropogenically-impacted estuary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call