Abstract

Despite of much evidence of trace metal pollution in the Pearl River Estuary (PRE), the seasonal dynamics of metal bioavailability as well as the potential impacts of metal pollution on the local marine organisms in this estuary is poorly understood. In the present study, the accumulation of trace metals and reproductive states of three populations of oyster Crassostrea hongkongensis, a keystone bivalve species in the PRE, were for the first time investigated throughout a one-year field study. Significant temporal fluctuations of metal accumulation were observed in the somatic tissues of oysters, suggesting seasonal variations of metal bioavailability in the PRE. A major feature of the seasonal variations was the increased levels of metal bioaccumulation in the summer season for the contaminated sites nearby the major river inlets. High riverine inputs accompanied by relatively lower salinity in summer may greatly contribute to such variations. Furthermore, oyster populations from two contaminated sites had a poor reproductive condition in comparison with the reference oyster population, as reflected by a significant decrease of gonad-somatic index (GSI) and gonad cover area (GCA), as well as an obvious change of sex ratios. Gonadal metal accumulation of Cu, Zn, Ni, Co and Pb in the contaminated oysters was much higher than that in the relatively uncontaminated oysters. Especially, the concentrations of these metals in the gonad during the breeding season had significantly negative correlations with the gonad condition indexes (GSI and GCA). Our results suggested strong seasonal fluctuations of bioavailability of trace metals in this highly contaminated estuary as well as an adverse effect of metal pollution on the reproduction of local oyster populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call