Abstract

Using field surveys in 2013, 2014, and 2016 plus satellite data from the 1999–2015 period, we analyze the seasonal drainage cycle of supraglacial lakes on seven debris-covered glaciers in the central Tien Shan. We characterize this cycle by the number of lakes and their water levels. The cycle of the Southern Inylchek Glacier starts to increase in the beginning of April, reaches a maximum in May–June, and decreases sharply in June–July. The increase in April to June comes from an inflow of meltwater from snow and ice, and the subsequent decrease arises from a greater connectivity to the englacial drainage network. For the Southern Inylchek Glacier, 94% of the supraglacial lakes that exist and appear during 2013–2015 drain during all three years, indicating that most lakes could connect to the englacial drainage network for three years. Concerning the water level, lakes in close proximity and with the same base-level tend to synchronize their seasonal water levels through the englacial channels. Although the maximum water level of the three-year, field-measured lake is about the same from 2014 through 2016, the date of maximum water level varies between mid-May and mid-June. During this period, the lifetime and size of the supraglacial lakes are controlled by the timing of their connectivity to the englacial drainage network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.