Abstract

The temporal variability of volume transport from the North Pacific Ocean to the East China Sea (ECS) through Kerama Gap (between Okinawa Island and Miyakojima Island − a part of Ryukyu Islands Arc) is investigated using a 20-year global HYbrid Coordinate Ocean Model (HYCOM) reanalysis with the Navy Coupled Ocean Data Assimilation from 1993 to 2012. The HYCOM mean transport is 2.1 Sv (positive into the ECS, 1 Sv = 106 m3/s) from June 2009 to June 2011, in good agreement with the observed 2.0 Sv transport during the same period. This is similar to the 20-year mean Kerama Gap transport of 1.95 ± 4.0 Sv. The 20-year monthly mean volume transport (transport seasonal cycle) is maximum in October (3.0 Sv) and minimum in November (0.5 Sv). The annual variation component (345–400 days), mesoscale eddy component (70–345 days), and Kuroshio meander component (< 70 days) are separated to determine their contributions to the transport seasonal cycle. The annual variation component has a close relation with the local wind field and increases (decreases) transport into the ECS through Kerama Gap in summer (winter). Most of the variations in the transport seasonal cycle come from the mesoscale eddy component. The impinging mesoscale eddies increase the transport into the ECS during January, February, May, and October, and decrease it in March, April, November, and December, but have little effect in summer (June–September). The Kuroshio meander components cause smaller transport variations in summer than in winter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.