Abstract
White-winged crossbills (Loxia leucoptera) are opportunistic breeders that can nest at almost any time of year if there is sufficient food. Other cardueline finches that have been shown to breed on a strictly seasonal schedule become absolutely refractory to the stimulatory effects of long-day photoperiod, dramatically down-regulate hypothalamic gonadotropin-releasing hormone (GnRH), and reduce the volume of several song-control nuclei in autumn. This study examined whether changes in photoperiod modify the GnRH and song-control systems in white-winged crossbills. Adult male and female crossbills were captured and held on a naturally changing photoperiod. Brains of male and female birds were collected in May, October, and January. GnRH content was assessed by immunocytochemistry and the volumes of Nissl-defined song-control nuclei (HVc, Area X, and the robust nucleus of the archistriatum) were reconstructed. In contrast to other cardueline finches, GnRH immunoreactivity was relatively stable across the year, exhibiting only modest seasonal variation. The song control system, on the other hand, exhibited large seasonal changes as well as sex differences. Thus, crossbills appear to maintain hypothalamic GnRH content year round, perhaps to facilitate a rapid response to favorable breeding conditions, even on short days. However, song control nuclei are dramatically affected by photoperiod. Future work should examine these systems in crossbills breeding on short days to compare photoperiod-dependent and -independent effects on neural plasticity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have