Abstract

It is important to investigate the airborne bacterial air quality in urban forest parks as tree bacteriostasis practices are being increasingly advocated as measures to improve the air quality and public health in urban green spaces around the world. The aim of the study was to quantitatively investigate airborne culturable bacteria (ACB) concentration levels based on field measurements in every season in five selected forest communities and the uncovered space in an urban forest park, as well as the effects of several factors on the culturability of airborne bacteria. Results suggested that the airborne bacterial levels of all the forest communities reached the clean air quality standard with regard to the airborne bacteria content, with the highest concentration of ACB showing in the uncovered space (1658 ± 1298 CFU/m3) and the lowest showing in the mixed community (907 ± 567 CFU/m3). The temporal distribution analysis showed that the airborne bacteria were mostly concentrated in summer, as well as in the morning and afternoon. The bacteriostatic rates of the mixed community were significantly different with seasonal variation (p < 0.05). Spearman's correlations revealed that the concentration of ACB was significantly positively correlated with the season, wind speed (WS), temperature (T), ultraviolet light (UV), negative air ion (NAI), and total suspended particles (TSP) (p<0.05) but significantly negatively correlated with the forest community type (p < 0.05). Overall, the selection of tree species plays a key role in shaping the forest structure and improving air quality, and the urban forest highlights key priorities for future efforts toward a cleaner, healthier, and more diverse regional forest environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call