Abstract

Abstract Temporal and spatial patterns of near-inertial kinetic energy (KEmoor) are investigated in a database of 2480 globally distributed, moored current-meter records (deployed on 690 separate moorings) and compared with the distribution of wind-forced mixed-layer energy flux FML. By computing KEmoor using short (30 day) multitaper spectral windows, the seasonal cycle is resolved. Clear winter enhancement by a factor of 4–5 is seen in the Northern Hemisphere for latitudes 25°–45° at all depths <4500 m, in close agreement with the magnitude, phase, and latitudinal dependence of the seasonal cycle of FML. In the Southern Hemisphere, data coverage is poorer, but a weaker seasonal cycle (a factor of 2) in both KEmoor and FML is still resolvable between 35° and 50°. When Wentzel–Kramers–Brillouin (WKB) scaled using climatological buoyancy-frequency profiles, summer KEmoor is approximately constant in depth while showing a clear decrease by a factor of 4–5 from 500 to 3500 m in winter. Spatial coverage is sufficient in the Northern Hemisphere to resolve broad KEmoor maxima in the western portion of each ocean basin in winter, generally collocated with FML maxima associated with storm forcing. The ratio of depth-integrated KEmoor to FML gives a replenishment time scale, which is about 10 days in midlatitudes, consistent with 1) previous estimates of the dissipation time scale of the internal wave continuum and 2) the presence of a seasonal cycle. Its increase to ≈70–80 days at lower latitudes is a possible signature of equatorward propagation of near-inertial waves. The seasonal modulation of the magnitude of KEmoor, its similarity to that in FML, and the depth decay and western intensification in winter but not in summer are consistent with a primarily wind-forced near-inertial field for latitudes poleward of ≈25°.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call