Abstract

Using TIMED/SABER observations, we present global distribution of the semiannual oscillation (SAO), annual oscillation (AO), and quasi‐biennial oscillation (QBO) in the OH nightglow peak emission rate and height as well as the intensity. The latitudinal variations of the SAO, AO, and QBO in the peak emission rate are similar to those in the intensity. For the peak emission rate and the intensity, the SAO and QBO amplitudes have three peaks (one at the equator and others at about 35°S and 35°N). The AO amplitude peaks at about 20°S and 20°N, respectively. The SAO phase is delayed poleward from the equinoxes at the equator to the solstices at 50°S/N; in addition, the phases of the AO are delayed poleward from 30°S. For the peak height, the SAO and QBO amplitudes have three peaks (around the equator, 40°S, and 40°N). Its AO amplitudes at 50°S and 50°N are larger than those at other latitudes; the phase of the SAO shifts from the solstice at the equator to near the equinoxes at 50°S/N. The airglow QBO is stronger in tropics than midlatitude and is likely the real QBO oscillation at the equator. In addition, the emission in the Southern Hemisphere is weaker than that in the Northern Hemisphere. The SAO and QBO are hemispherically symmetrical, and the AO is hemispherically antisymmetrical at some latitudes. The peak emission rate and peak height SAOs are generally in antiphase. The peak emission rate and intensity SAOs are generally in phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.