Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> Based on the volume emission rate of the OH airglow observed by TIMED/SABER, we fitted the peak emission rate and the peak height of the OH airglow and analyzed the seasonal and interannual variations of both. The results show similar latitudinal variations in the semiannual oscillation (SAO) and annual oscillation (AO) of peak emission rate and peak height: the amplitude of SAO is greatest in equatorial regions and AO is greatest in mid-latitudes. For interannual variations, we find that OH airglow emission in equatorial regions is modulated by the quasi-biennial oscillation (QBO), while the QBO signal at other latitudes is much weaker than in equatorial regions and can be ignored. The QBO in OH airglow is consistent with the phase variation of the QBO in the tropical lower stratosphere (30 km), which is also consistent with the phase variation of the QBO in the migrating diurnal tide. As an important kinetic process affecting OH airglow emission, we suggest that the tides play an important role in the modulation of the OH airglow by the QBO. In addition, we have analyzed the relationship between peak OH airglow emission and solar activity. The results show a good correlation between peak emission rate and solar activity, with a correlation coefficient of 0.89, while peak height shows no significant solar cycle variation, with a correlation coefficient of &minus;0.66. The modulation of peak emission rate by solar activity has significant latitudinal variation. The modulation effect is weakest in the equatorial region and greatest at mid-latitudes in both hemispheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.