Abstract

We investigated the seasonal and annual variability of surface sulphur plumes in the northern Benguela upwelling system off Namibia because of their significant impacts on the marine ecosystem, fishing industry, aquaculture farming and tourism due to their toxic properties. We identified the sulphur plumes in ocean colour satellite data of the medium resolution imaging spectrometer (MERIS) for the 2002–2012 time period using the differences in the spectral properties of Namibian Benguela optical water types. The sulphur events have a strong seasonal cycle with pronounced main and off-seasons forced by local and remote-driven processes. The main peak season is in late austral summer and early austral autumn at the beginning of the annual upwelling cycle caused by increasing equatorwards alongshore winds. The sulphur plume activity is high between February and April during the seasonal oxygen minimum associated with the seasonal reduction of cross-shore ventilation of the bottom waters, the seasonal southernmost position of the Angola Benguela Frontal Zone, the seasonal maximum of water mass fractions of South Atlantic and Angola Gyre Central Waters as well as the seasonal arrival of the downwelling coastal trapped waves. The off-season is in austral spring and early austral summer during increased upwelling intensity and enhanced oxygen supply. The annual variability of sulphur events is characterized by very high activities in years 2004, 2005 and 2010 interrupted by periods of lower activity in years 2002 to 2003, 2006 to 2009 and 2011 to 2012. This result can be explained by the relative contributions or adding effects of local and remote-driven forces (from the equatorial area). The probability for the occurrence of sulphur plumes is enhanced in years with a lower annual mean of upwelling intensity, decreased oxygen supply associated with decreased lateral ventilation of bottom waters, more southern position of the Angola Benguela Frontal Zone, increased mass fraction of South Atlantic Central Water and stronger downwelling coastal trapped waves. Understanding of the variability and forcing processes of the toxic sulphur events will help in the future to monitor and forecast them as well as to manage their social and economic consequences in the northern Benguela upwelling system off Namibia.

Highlights

  • The Benguela upwelling system (BUS) is one of the four eastern boundary upwelling systems of the global ocean

  • For the first time we have proved the seasonal variability of coastal surface sulphur plumes with the long-term satellite data set of medium resolution imaging spectrometer (MERIS)

  • We found that the sulphur plumes have a strong seasonal cycle with pronounced main and off-seasons

Read more

Summary

Introduction

The Benguela upwelling system (BUS) is one of the four eastern boundary upwelling systems of the global ocean. In the NBUS off Namibia associated with the OMZ, hydrogen sulphide outbreaks and their sulphur plumes are unique events not found anywhere else in the global ocean with such intensity. These events, which influence the marine ecosystem due to their toxic effects [7, 8], have direct impacts on the biogeochemical cycles [9, 10] and are able to affect the Namibian industry [11,12,13]. The tourism activity is impacted due to the accumulations of dead marine organisms on the beaches [11, 14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call