Abstract

Despite the apparent importance of solar radiation as a source of heat for free-living animals, there exists no substantial body of empirical data describing physiological responses to solar radiation under the range of convective conditions likely to occur in nature. We therefore quantified effects of simulated solar radiation and wind on metabolic heat production in the rock squirrel, Spermophilus variegatus. This diurnal mammal inhabits the Sonoran Desert and seasonally replaces its pelage in a fashion in which it retains constant external appearance but incorporates optical and structural changes that are thought to significantly alter heat-transfer properties of the coat. At a given wind speed, the presence of 950 W m-2 of simulated solar radiation reduces metabolic heat production by 15% (at a wind speed of 4 m s-1) to 37% (at a wind speed of 0.25 m s-1). Independent of effects of irradiance, metabolic heat production significantly increases with wind speed such that as wind speed is increased from 0.25 m s-1 to 4.0 m s-1, metabolic heat production is elevated by 66% (sunlight absent) or 88% (sunlight present). Previous analyses demonstrated that when exposed to identical radiative and convective environments rock squirrels with summer pelages accrue solar heat loads 33%-71% lower than those experienced by animals with winter coats. This reduction of solar heat gain during the extremely hot Sonoran Desert summer apparently constitutes a previously unappreciated mode of thermal adaptation by seasonal adjustment of radiative heat gain without changes in the animal's appearance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call