Abstract
BackgroundStructural equation models (SEM) are used to model multiple traits and the casual links among them. The number of different causal structures that can be used to fit a SEM is typically very large, even when only a few traits are studied. In recent applications of SEM in quantitative genetics mixed model settings, causal structures were pre-selected based on prior beliefs alone. Alternatively, there are algorithms that search for structures that are compatible with the joint distribution of the data. However, such a search cannot be performed directly on the joint distribution of the phenotypes since causal relationships are possibly masked by genetic covariances. In this context, the application of the Inductive Causation (IC) algorithm to the joint distribution of phenotypes conditional to unobservable genetic effects has been proposed.MethodsHere, we applied this approach to five traits in European quail: birth weight (BW), weight at 35 days of age (W35), age at first egg (AFE), average egg weight from 77 to 110 days of age (AEW), and number of eggs laid in the same period (NE). We have focused the discussion on the challenges and difficulties resulting from applying this method to field data. Statistical decisions regarding partial correlations were based on different Highest Posterior Density (HPD) interval contents and models based on the selected causal structures were compared using the Deviance Information Criterion (DIC). In addition, we used temporal information to perform additional edge orienting, overriding the algorithm output when necessary.ResultsAs a result, the final causal structure consisted of two separated substructures: BW→AEW and W35→AFE→NE, where an arrow represents a direct effect. Comparison between a SEM with the selected structure and a Multiple Trait Animal Model using DIC indicated that the SEM is more plausible.ConclusionsCoupling prior knowledge with the output provided by the IC algorithm allowed further learning regarding phenotypic causal structures when compared to standard mixed effects SEM applications.
Highlights
Structural equation models (SEM) are used to model multiple traits and the casual links among them
The choice of causal structures for the aforementioned SEM applications that followed the work of [3] were performed on the basis of prior beliefs, resulting in poor exploration of structures spaces. Methodologies such as the Inductive Causation (IC) algorithm [12,13] make it possible to search for recursive causal structures that are compatible with the joint probability distribution of the variables considered
Five traits were analyzed: birth weight (BW), weight at 35 days of age (W35), age at first egg (AFE), average egg weight from 77 to 110 days of age (AEW), and number of eggs laid in the same period (NE)
Summary
Data The data refer to 849 female European quail (Coturnix coturnix coturnix) from six distinguished hatch seasons. For each query about the statistical independence between phenotypes yj and yj’ (j ≠ j’ = 1, 2, ..., t) given a set of traits S and, implicitly, the genetic effects: a) Obtain the posterior distribution of residual partial correlation rj, j’|S. These partial correlations are functions of R∗0.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have