Abstract

Laves phases exhibit a plethora of different structures and a multitude of physical properties. Investigations in the ternary system Hf-V-Al led to the discovery of numerous members of the solid solution Hf(V1-xAlx)2, which adopt the hexagonal MgZn2 type (C14) for medium to high amounts of Al (x = 0.2-1) and the cubic MgCu2 type (C15) for small Al amounts (x = 0.05-0.1). While all members exhibit Pauli-paramagnetic behavior due to the absence of localized magnetic moments, the V-rich cubic member Hf(V0.95Al0.05)2 additionally exhibits a superconducting state below TC = 7.6(1) K. All synthesized compounds were characterized by powder X-ray diffraction, and selected samples were furthermore investigated by 27Al solid-state magic-angle spinning (MAS) NMR. HfAl2 exhibits two Al resonances, one rather sharp and one significantly broadened signal, in line with the crystal structure and respective coordination environments. The members of the solid solution exhibit extremely broadened resonances due to the mixing of V and Al on the same crystallographic sites. For nominal Hf(V0.125Al0.875)2, however, two distinct sharp NMR signals were observed. This contrasts with the description of a solid solution. Therefore, single-crystal X-ray studies were conducted, showing that Hf(V0.125Al0.875)2 really is an ordered compound with the sum formula Hf4VAl7 (P3̅m1), which exhibits an, thus far, unknown superstructure of MgZn2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.