Abstract

We report the results of an experimental study of the sensitivity of two distinct classes of systems that exploit nuclear resonance fluorescence (NRF) to search for illicit materials in containers. One class of systems is based on the direct detection of NRF photons emitted from isotopes of interest. The other class infers the presence of a particular isotope by observing the preferential attenuation of resonant photons in the incident beam. We developed a detailed analytical model for both approaches. We performed experiments to test the model using depleted uranium as a surrogate for illicit material and used tungsten as a random choice for shielding. We performed the experiments at Duke University’s High Intensity Gamma Source (HIGS). Using the methodology we detail in this paper one can use this model to estimate the performance of potential inspection systems in certifying containers as free of illicit materials and for detecting the presence of those same materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call