Abstract

We look at a two-sample problem within the framework of decomposable graphical models. When the global hypothesis of equality of two distributions is rejected, the interest is usually in localizing the source of difference. Motivated by the idea that diseases can be seen as system perturbations, and by the need to distinguish between the origin of perturbation and components affected by the perturbation, we introduce the concept of a minimal seed set, and its graphical counterpart a graphical seed set. They intuitively consist of variables driving the difference between the two conditions. We propose a simple testing procedure, linear in the number of nodes, to estimate the graphical seed set from data. We illustrate our approach in the context of gene set analysis, where we show that is possible to zoom in on the origin of perturbation in a gene network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.