Abstract
Technological advances in textile, biosensor and electrocardiography domain induced the wide spread use of bio-signal acquisition devices leading to the generation of massive bio-signal datasets. Among the most popular bio-signals, electrocardiogram (ECG) possesses the longest tradition in bio-signal monitoring and recording, being a strong and relatively robust signal. As research resources are fostered, research community promotes the need to extract new knowledge from bio-signals towards the adoption of new medical procedures. However, integrated access, query and management of ECGs are impeded by the diversity and heterogeneity of bio-signal storage data formats. In this scope, the proposed work introduces a new methodology for the unified access to bio-signal databases and the accompanying metadata. It allows decoupling information retrieval from actual underlying datasource structures and enables transparent content and context based searching from multiple data resources. Our approach is based on the definition of an interactive global ontology which manipulates the similarities and the differences of the underlying sources to either establish similarity mappings or enrich its terminological structure. We also introduce ROISES (Research Oriented Integration System for ECG Signals), for the definition of complex content based queries against the diverse bio-signal data sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.