Abstract
The lackadaisical quantum walk is a discrete-time, coined quantum walk on a graph with a weighted self-loop at each vertex. It uses a generalized Grover coin and the flip-flop shift, which makes it equivalent to Szegedy's quantum Markov chain. It has been shown that a lackadaisical quantum walk can improve spatial search on the complete graph, discrete torus, cycle, and regular complete bipartite graph. In this paper, we observe that these are all vertex-transitive graphs, and when there is a unique marked vertex, the optimal weight of the self-loop equals the degree of the loopless graph divided by the total number of vertices. We propose that this holds for all vertex-transitive graphs with a unique marked vertex. We present a number of numerical simulations supporting this hypothesis, including search on periodic cubic lattices of arbitrary dimension, strongly regular graphs, Johnson graphs, and the hypercube.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.