Abstract

The lackadaisical quantum walk is a lazy version of a discrete-time, coined quantum walk, where each vertex has a weighted self-loop that permits the walker to stay put. They have been used to speed up spatial search on a variety of graphs, including periodic lattices, strongly regular graphs, Johnson graphs, and the hypercube. In these prior works, the weights of the self-loops preserved the symmetries of the graphs. In this paper, we show that the self-loops can break all the symmetries of vertex-transitive graphs while providing the same computational speedups. Only the weight of the self-loop at the marked vertex matters, and the remaining self-loop weights can be chosen randomly, as long as they are small compared to the degree of the graph.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.