Abstract
Previous work has shown that pentacoordinated bromine compounds have their lowest excited electronic states shifted to the blue relative to monocoordinated bromine molecules, and that this shift may be large enough to render them photostable in the lower stratosphere. Our earlier work has also shown that certain pentacoordinated bromine compounds are thermodynamically stable relative to their mono- or tricoordinated isomers, suggesting that if a bromine stratospheric reservoir species exists, it may be a pentacoordinated compound. In this study we have examined the singlet and triplet excited electronic states of several bromine compounds, using time dependent density functional theory, to assess their photostability under stratospheric conditions and in order to elucidate the nature of lowest excited states in mono-, tri-, and pentacoordinated bromine molecules. The triplet states have been included due to the strong spin-orbit mixing in bromine. We have found several pentacoordinated bromine/oxygen compounds that could be photostable in the lower stratosphere, but we have also found that monovalent bromine compounds where the bromine atom is bonded to an atom with no lone-pair p-electrons is far and away the most photostable. Attachment/detachment electron density plots have been useful in ascertaining the nature of the excited electronic states and their likely path to photodissociation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.