Abstract
Gamma Ray Bursts (GRBs) are brief, randomly located, releases of gamma-ray energy from unknown celestial sources that occur almost daily. The study of GRBs has undergone a revolution in the past three years due to an international effort of follow-up observations made possible by the instantaneous distribution of reliable GRB coordinate information over the internet provided by NASA's GCN (GRB Coordinates Network). The 3-year LDRD project described here, done in collaboration with the workers responsible for the GCN, was the very first serious system to actively utilize the GCN and thus played a major role in the development of the GCN and the dramatic increase in our understanding of GRBs. The scientific objective of this project was to measure the intensity of any prompt visible radiation accompanying the gamma-ray emission utilizing a small but sensitive robotic telescope that responded to GCN triggers by rapidly taking images of the GCN error box. The instrument developed for this project, LOTIS, was the first of its kind, and the longest running, collecting data on over 75 GRBs during its 3 year running period. The results of LOTIS and the other follow-up programs have now shown that GRBs are at cosmological distances and interactmore » with surrounding material as described by the ''fireball model.'' Visible, prompt, optical counterparts have only been seen in one case and are therefore very rare or much dimmer than the sensitivity of the current instruments. This places numerical limits on the surrounding matter density, and other physical parameters in the GRB environment. A much more sensitive instrument, Super-LOTIS, has been developed for operation at Kitt-Peak.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.