Abstract

Gamma Ray Bursts (GRBs) are brief, randomly located, releases of gamma-ray energy from unknown celestial sources that occur almost daily. The study of GRBs has undergone a revolution in the past three years due to an international effort of follow-up observations of coordinates provided by Beppo/SAX and IPN GRB. These follow-up observations have shown that GRBs are at cosmological distances and interact with surrounding material as described by the fireball model. However, prompt optical counterparts have only been seen in one case and are therefore very rare or much dimmer than the sensitivity of the current instruments. Unlike later time afterglows, prompt optical measurements would provide information on the GRB progenitor. LOTIS is the very first automated and dedicated telescope system that actively utilizes the GRB Coordinates Network (GCN) and it attempts to measure simultaneous optical light curve associated with GRBs. After 3 years of running, LOTIS has responded to 75 GRB triggers. The lack of any optical signal in any of the LOTIS images places numerical limits on the surrounding matter density, and other physical parameters in the environment of the GRB progenitor. This paper presents LOTIS results and describes other prompt GRB follow-up experiments including the Super-LOTIS at Kitt Peak in Arizona.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.