Abstract

Owing to an unmatched combination of power and energy density along with cyclic stability, the Li-ion battery has qualified itself to be the highest performing rechargeable battery. Taking both transportable and stationary energy storage requirements into consideration, Li-ion batteries indeed stand tall in comparison to any other existing rechargeable battery technologies. However, graphite, which is still one of the best performing Li-ion anodes, has specific drawbacks in fulfilling the ever-increasing energy and power density requirements of the modern world. Therefore, further research on alternative anode materials is absolutely essential. Equally important is the search for and enhanced use of right earth abundant materials for battery electrodes so as to bring down the costs of the battery systems. In this spotlight article, we discuss the current research progress in the area of alternative anode materials for Li-ion battery, putting our own research work over the past several years into perspective. Starting from conversion anode systems like oxides and sulfides, to insertion cum alloying systems like transition metal carbides, to molecularly engineered open framework systems like metal organic frameworks (MOFs), covalent organic frameworks (COFs), and organic-inorganic hybrid perovskites (OIHPs), this spotlight provides a complete essence of the recent developments in the area of alternative anodes. The possible and potential impact of these new anode materials is detailed and discussed here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.