Abstract
Spontaneous fission (SF) with a new formula based on a liquid drop model is proposed and used in the calculation of the SF half-lives of heavy and superheavy nuclei (Z= 90–120). The predicted half-lives are in agreement with the experimental SF half-lives. The half-lives of decay (AD) for the same nuclei are obtained by using the Wentzel-Kramers-Brillouin (WKB) method together with Bohr-Sommerfeld (BS) quantization condition considering the isospin-dependent effects for the cosh potential. The decay modes and branching ratios of superheavy nuclei (Z= 104-118) with experimental decay modes are obtained, and the modes are compared with the experimental ones and with the predictions found in the literature. Although some nuclei have predicted decay modes that are different from their experimental decay modes, decay modes same as the experimental ones are predicted for many nuclei. The SF and AD half-lives, branching ratios, and decay modes are obtained for superheavy nuclei (Z= 119–120) with unknown decay modes and compared with the predictions obtained in a previous study. The present results provide useful information for future experimental studies performed on both the AD and SF of superheavy nuclei.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.