Abstract

We systematically investigate the {alpha}-decay and spontaneous fission half-lives for heavy and superheavy nuclei with proton number Z{>=}90. The {alpha}-decay half-lives are obtained by the deformed version of the density-dependent cluster model (DDCM). In the DDCM, the microscopic potential between the {alpha} particle and the daughter nucleus is evaluated numerically from the double-folding model with the M3Y interaction. The influence of the core deformation on the double-folding potential is also properly taken into account by the multipole expansion method. The spontaneous fission half-lives of nuclei from {sup 232}Th to {sup 286}114 are calculated with the parabolic potential approximation by taking nuclear structure effects into account. The agreement between theoretical results and the newly observed data is satisfactory for both {alpha} emitters and spontaneous fission nuclei. The competition between {alpha} decay and spontaneous fission is analyzed in detail and the branching ratios of these two decay modes are predicted for the unknown cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call