Abstract

We analyse the dark Higgs inflation model with curvature corrections and explore the possibility to test its predictions by the particle physics experiments at LHC. We show that the dark Higgs inflation model with curvature corrections is strongly favoured by the present cosmological observation. The cosmological predictions of this model, including the quantum corrections of dark Higgs coupling constants and the uncertainty in estimation of the reheating temperature, lead to the dark Higgs mass mφ=0.919± 0.211 GeV and the mixing angle (at 68% CL). We evaluate the FASER and MAPP-1 experiments reach for dark Higgs inflation mass and mixing angle in the 95% CL cosmological confidence region for an integrated luminosity of 3ab−1 at 13 TeV LHC, assuming 100% detection efficiency. We conclude that the dark Higgs inflation model with curvature corrections is a compelling inflation scenario based on particle physics theory favoured by the present cosmological measurements that can leave imprints in the dark Higgs boson searchers at LHC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call