Abstract

The dark photon A^{'} and the dark Higgs boson h^{'} are hypothetical particles predicted in many dark sector models. We search for the simultaneous production of A^{'} and h^{'} in the dark Higgsstrahlung process e^{+}e^{-}→A^{'}h^{'} with A^{'}→μ^{+}μ^{-} and h^{'} invisible in electron-positron collisions at a center-of-mass energy of 10.58GeV in data collected by the Belle II experiment in 2019. With an integrated luminosity of 8.34 fb^{-1}, we observe no evidence for signal. We obtain exclusion limits at 90% Bayesian credibility in the range of 1.7-5.0fb on the cross section and in the range of 1.7×10^{-8}-200×10^{-8} on the effective coupling ϵ^{2}×α_{D} for the A^{'} mass in the range of 4.0 GeV/c^{2}<M_{A^{'}}<9.7 GeV/c^{2} and for the h^{'} mass M_{h^{'}}<M_{A^{'}}, where ϵ is the mixing strength between the standard model and the dark photon and α_{D} is the coupling of the dark photon to the dark Higgs boson. Our limits are the first in this mass range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call