Abstract
The Large Hadron Collider (LHC) has confirmed the Higgs mechanism to generate mass in the Standard Model (SM), making it attractive also to consider spontaneous symmetry breaking as the origin of mass for new particles in a dark sector extension of the SM. Such a dark Higgs mechanism may in particular give mass to a dark matter candidate and to the gauge boson mediating its interactions (called dark photon). In this review, we summarize the phenomenology of the resulting dark Higgs boson and discuss the corresponding search strategies with a focus on collider experiments. We consider both the case that the dark Higgs boson is heavier than the SM Higgs boson, in which case leading constraints come from direct searches for new Higgs bosons as well missing-energy searches at the LHC, and the case that the dark Higgs boson is (potentially much) lighter than the SM Higgs boson, such that the maximum sensitivity comes from electron–positron colliders and fixed-target experiments. Of particular experimental interest for both cases is the associated production of a dark Higgs boson with a dark photon, which subsequently decays into SM fermions, dark matter particles or long-lived dark sector states. We also discuss the important role of exotic decays of the SM-like Higgs boson and complementary constraints arising from early-universe cosmology, astrophysics, and direct searches for dark matter in laboratory experiments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.