Abstract

Heavy ion reactions induced by few tens MeV/nucleon beams constitute an ideal framework for producing and studying nuclear excited states close to the decay threshold. The fragmentation of quasi-projectiles from the nuclear reaction 40Ca+12C at 25 MeV/nucleon performed at LNS-Catania was employed in order to populate the Hoyle state of 12C and investigate the theoretically predicted molecular structures. Complete kinematic characterization of individual decay events, made possible by the CHIMERA high-granularity 4π charged particle multi-detector, reveals that 7.5±4.0% of the particle decays of the Hoyle state correspond to direct decays in three equal-energy α-particles and thus fulfill the decay criteria of an α-particle condensate. Moreover, events with increased kinetic energy dispersion in the 12C center of mass, which amount to 9.5±4.0%, point toward the occurrence of a second competing molecular configuration, a linear α-chain type. Both α-particle condensate and linear chain structures have been theoretically predicted but, to our knowledge, not experimentally confirmed so far.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.