Abstract

The onset of quartetting, i.e. α-particle condensation, in symmetric and asymmetric nuclear matter is studied with the help of an in-medium modified four nucleon equation. It is found that at very low density quartetting wins over pairing, because of the strong binding of the α-particles. The critical temperature can reach values up to around 8 MeV. The disappearance of α-particles with increasing density, i.e. the Mott transition, is investigated. In finite nuclei the Hoyle state, that is the 02+ of 12C is identified as an 'α-particle condensate' state. It is conjectured that such states also exist in heavier nα-nuclei, like 16O, 20Ne, etc. The sixth 0+ state in 16O is proposed as an analogue to the Hoyle state. The Gross-Pitaevski equation is employed to make an estimate of the maximum number of α particles a condensate state can contain. Possible quartet condensation in other systems is discussed briefly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.