Abstract
Abstract : Hierarchical Task Network (HTN) planning is the problem of decomposing an initial task into a sequence of executable steps. Often viewed as just a way to encode human knowledge to solve classical planning problems faster, HTN planning is more expressive than classical planning, even to the point of being undecidable in the general case. However, HTN planning is not just a way to solve planning problems faster, but is itself a search problem that can benefit from its own distinct search algorithms and heuristics. The dissertation examines the complexities of various HTN planning problem classes in order to motivate the development of heuristic search algorithms for HTN planning which are guaranteed to terminate on a large class of syntactically identifiable problems, as well as domain independent heuristics for those algorithms to use. This will allow HTN planning to be used in a number of areas where problems may be unsolvable, including during the initial development of a domain and for use in policy generation in non-deterministic planning environments. In particular, this dissertation analyzes two commonly used algorithms for HTN planning and describes the subsets of HTN problems that these algorithms terminate on. This allows us to discuss the run-times of these algorithms and compare the expressivity of the classes of problems they decide. We provide two new HTN algorithms which terminate on a strictly broader and more expressive set of HTN problems. We also analyze the complexity of delete-free HTN planning, an analogue to delete-free classical planning which is the base of many classical planning heuristics. We show that delete-free HTN planning is NP-complete, putting the existence of strict-semantics delete-relaxation-based HTN heuristics out of reach for practical purposes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have