Abstract

Ride-hailing services have expanded the role of shared mobility in passenger transportation systems, creating new markets and creative planning solutions for major urban centers. In this paper, we consider their use for the first-mile or last-mile passenger transportation in coordination with a mass transit service to provide a seamless multimodal transportation experience for the user. A system that provides passengers with predictable information on travel and waiting times in their commutes is immensely valuable. We envision that the passengers will inform the system of their desired travel and arrival windows so that the system can jointly optimize the schedules of passengers. The problem we study balances minimizing travel time and the number of trips taken by the last-mile vehicles, so that long-term planning, maintenance, and environmental impact are all taken into account. We focus on the case where the last-mile service aggregates passengers by destination. We show that this problem is NP-hard, and we propose a decision diagram–based branch-and-price decomposition model that can solve instances of real-world size (10,000 passengers spread over an hour, 50 last-mile destinations, 600 last-mile vehicles) in computational time (∼1 minute) that is orders of magnitude faster than the solution times of other methods appearing in the literature. Our experiments also indicate that aggregating passengers by destination on the last-mile service provides high-quality solutions to more general settings. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods and Analysis. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2019.0163 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2019.0163 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.