Abstract

Abstract A deep learning model is presented to nowcast the occurrence of lightning at a 5-min time resolution 60 min into the future. The model is based on a recurrent-convolutional architecture that allows it to recognize and predict the spatiotemporal development of convection, including the motion, growth and decay of thunderstorm cells. The predictions are performed on a stationary grid, without the use of storm object detection and tracking. The input data, collected from an area in and surrounding Switzerland, comprise ground-based radar data, visible/infrared satellite data and derived cloud products, lightning detection, numerical weather prediction, and digital elevation model data. We analyze different alternative loss functions, class weighting strategies and model features, providing guidelines for future studies to select loss functions optimally and to properly calibrate the probabilistic predictions of their model. On the basis of these analyses, we use focal loss in this study but conclude that it only provides a small benefit over cross entropy, which is a viable option if recalibration of the model is not practical. The model achieves a pixelwise critical success index (CSI) of 0.45 to predict lightning occurrence within 8 km over the 60-min nowcast period, ranging from a CSI of 0.75 at a 5-min lead time to a CSI of 0.32 at a 60-min lead time. Significance Statement We have developed a method based on artificial intelligence to forecast the occurrence of lightning at 5-min intervals within the next hour from the forecast time. The method utilizes a neural network that learns to predict lightning from a set of training images containing lightning detection data, weather radar observations, satellite imagery, weather forecasts, and elevation data. We find that the network is able to predict the motion, growth, and decay of lightning-producing thunderstorms and that, when properly tuned, it can accurately determine the probability of lightning occurring. This is expected to permit more informed decisions to be made about short-term lightning risks in fields such as civil protection, electricity-grid management, and aviation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call