Abstract
Abstract Of great relevance to climate engineering is the systematic relationship between the radiative forcing to the climate system and the response of the system, a relationship often represented by the linear response function (LRF) of the system. However, estimating the LRF often becomes an ill-posed inverse problem due to high-dimensionality and nonunique relationships between the forcing and response. Recent advances in machine learning make it possible to address the ill-posed inverse problem through regularization and sparse system fitting. Here, we develop a convolutional neural network (CNN) for regularized inversion. The CNN is trained using the surface temperature responses from a set of Green’s function perturbation experiments as imagery input data together with data sample densification. The resulting CNN model can infer the forcing pattern responsible for the temperature response from out-of-sample forcing scenarios. This promising proof of concept suggests a possible strategy for estimating the optimal forcing to negate certain undesirable effects of climate change. The limited success of this effort underscores the challenges of solving an inverse problem for a climate system with inherent nonlinearity. Significance Statement Predicting the climate response for a given climate forcing is a direct problem, while inferring the forcing for a given desired climate response is often an inverse, ill-posed, problem, posing a new challenge to the climate community. This study makes the first attempt to infer the radiative forcing for a given target pattern of global surface temperature response using a deep learning approach. The resulting deeply trained convolutional neural network inversion model shows promise in capturing the forcing pattern corresponding to a given surface temperature response, with a significant implication on the design of an optimal solar radiation management strategy for curbing global warming. This study also highlights the technical challenges that future research should prioritize in seeking feasible solutions to the inverse climate problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.