Abstract

Waves and tidal currents can interact to produce strong seabed shear stress and mobilization of sediments on continental shelves. Modelled wave and tidal current data for a 3-year period were used in a combined-flow sediment transport model to simulate the seabed shear stresses and the mobilization of uniform medium sand on the continental shelves of Canada. The modelling results are presented to establish the first national framework of seabed disturbance and sediment mobility on the continental shelves of Canada. Strong waves and tidal currents on the Canadian continental shelves produce mean bed shear velocity >5 cm·s−1. Medium sand can be mobilized >50% of the time over many areas on the shelves. The mobilization by tidal currents occurs over 36% and by waves over 50% of the shelf area, demonstrating that mobilization of sediments is dominated by waves on the Canadian continental shelves. Combined shear stresses due to wave and tidal current interaction further increase sediment mobilization to over 68% of the shelf area. The spatial variation of the relative importance of wave and tidal disturbances allows classification of the continental shelves into six disturbance types. Innovative Seabed Disturbance (SDI) and Sediment Mobility (SMI) indices are proposed to quantify the seabed exposure to oceanographic processes and sediment mobilization, incorporating both the magnitude and frequency of these processes. The proposed SDI and SMI, together with the disturbance type classification, can be used as standard parameters to best quantify seabed disturbance and sediment mobility on other shelves of the world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call