Abstract

Sea Surface Temperature (SST), a critical environmental element in the ocean, significantly impacts the global atmosphere-ocean energy balance and holds the potential to trigger severe weather like droughts, floods, and El Niño events. Therefore, the prediction of future SST dynamics is crucial to identifying these extreme events and mitigating the damage they caused. In this study, we introduce a time series prediction method based on the Self-Attention Mechanism-Long Short-Term Memory (SAM-LSTM) model. In addition, the historical time-series satellite data of SST anomaly (SSTA) is used instead of SST itself considering that the fluctuations of SST are very small compared to their absolute magnitudes. The Seasonal-Trend decomposition using Loess (STL) method is adopted to decompose the complex non-linear SSTA time series into trend components, seasonal components, and residual components. Then, the deseasonalized time series data at 6 locations in the Bohai Sea are used to train and valid the developed SAM-LSTM model. After that, the validated models are applied to the Yellow Sea, East China Sea, and South China Sea. The experimental results show that the combination of STL time series decomposition and SAM-LSTM can achieve high-precision prediction of daily SSTA than LSTM. This suggests that the methodology used in this paper has a good application for short-term daily SST prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call