Abstract

ABSTRACT The seven simulations were performed to investigate the role of the sea surface temperature (SST) in numerical prediction of tropical cyclones (TCs). The TC Gonu, formed over the Arabian Sea in 2007, was selected for this study. The first five simulations were performed using WRF model. In the first simulation as control simulation (CTL), the SST derived from NCEP-MMAB was used. In the second simulation, 1°C was added to input SST, and in the third simulation, 1°C was subtracted to input SST. It was found that the deviation between the simulated track of simulation SST +1 and CTL is more significant than that between simulation SST −1 and CTL. For the fourth simulation, a homogeneous SST field over the entire basin was used. For the fifth simulation, SST anomaly was calculated, and its values were added to the entire domain. Removing the temperature gradient caused TC intensity to decrease and deviation of the track to the northeast; the increasing temperature gradient had a lower impact on the TC intensity but with a significant deviation of the track to the north with respect to the CTL simulation. In the sixth simulation to consider cyclone-induced SST cooling, a one-dimensional oceanic mixed layer scheme was applied. Results showed no significant reduction in TC intensity. In the seventh simulation, the COAWST modelling system was used. The simulated SST of the COAWST model was consistent with the satellite observations, which finally led to improve the simulation of track and intensity of TC Gonu.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call