Abstract

Inland deposition of sea salt aerosol (SSA) particles emitted over the ocean is studied via numerical and theoretical models. The focus is on the large particles that contribute most to the total mass deposition. Large eddy simulations of idealized sea wind are used to investigate the development of the particle plume over land for different particle sizes and to validate some of the assumptions in the theoretical model. An existing theoretical modeling framework for particle dispersion in the atmospheric boundary layer is adapted to the problem of SSA deposition and it is shown to be adequate for the large particles of interest here. The decay of monodisperse SSA particle deposition flux with distance from the shoreline is shown to have a power-law behavior far from the shoreline. A complete model for predicting mass deposition as a function of distance is formulated and shown to present reasonable agreement with existing data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call