Abstract

AbstractSea level rise alters coastal carbon cycling by driving the rapid migration of coastal ecosystems, salinization of freshwater systems, and replacement of terrestrial forests with tidal wetlands. Wetland soils accumulate carbon (C) at faster rates than terrestrial soils, implying that sea level rise may lead to enhanced carbon accumulation. Here, we show that carbon stored in tree biomass greatly exceeds carbon stored in adjacent marsh soils so that marsh migration reduces total carbon stocks by ∼50% in less than 100 years. Continued marsh soil carbon accumulation may eventually offset forest carbon loss, but we estimate that the time for replacement is similar to estimates of marsh survival (i.e., centuries), which suggests that forest C may never be replaced. These findings reveal a critical C source not included in coastal C budgets driven by migrating ecosystems and rapidly shifting allocations between carbon stored in soils and biomass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.