Abstract

With a narrow margin between deficiency and toxicity, rising levels of selenium (Se) are threatening aquatic ecosystems. To investigate the role of microorganisms in Se bioremediation, a cattail litter system inoculated with the sulfur-based denitrification sludge was conducted. The results show the litter, as a carrier and nutrient source for bacteria, efficiently removed Se by ~ 97.0% during a 12-d treatment with water circulating. As the major removal pathways, immobilization rates of selenite were ~ 2.9-fold higher than selenate, and the volatilization, contributing to ~ 87.7% of the total Se removal, was significantly correlated with temperature (positively) and oxidation-reduction potential (ORP; negatively). Using X-ray absorption spectroscopy to speciate litter-borne Se, more Se0 formed without aeration due to abundant Se-reducing bacteria, among which Azospira and Azospirillum were highly related to the removal of both Se oxyanions, while Desulfovibrio, Azoarcus, Sulfurospirillum, Thauera, Geobacter, Clostridium, and Pediococcus were the major contributors to selenate removal. Overall, our study suggests microbial Se metabolism in the litter system was significantly affected by temperature and ORP, which could be manipulated to enhance Se removal efficiency and the transformation of selenate/selenite into low toxic Se0 and volatile Se, reducing risks posed by the residual Se in the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call