Abstract

The elevated level of selenium (Se) in the aqueous system presents long-term ecological risks. Hydroxylated calcined dolomites (HCDs) are considered as potentially sustainable lime sources due to their lower production temperatures and resourceful than lime. In this study, HCDs were developed for the removal of Se contaminated water. The HCDs exhibited a better performance to co-precipitate with Se oxyanions than pure Ca(OH)2. Considering that HCDs consisted of Ca(OH)2 with MgO and Mg(OH)2, the function of Mg compounds was also elaborated by various characterization techniques. Mg compounds were proved to enhance the precipitation process and Se removal. STEM-EDX observation revealed that SeO32– was incorporated into the ettringite structure with Mg compounds, whereas SeO42– exhibited a affinity to Mg compounds. Extended X-ray absorption fine structure (EXAFS) results for the MgO/Mg(OH)2 after the reaction proved that both SeO32– interacted with Mg(OH)2 and MgO via inner-sphere complexes whereas SeO42– formed outer-sphere complexes with these Mg compounds. Besides, Mg compounds also influenced the surface charge of solid residues and thus enhanced SeO32– removal. This study provides a fundamental understanding of the roles of Mg compounds in the removal of Se oxyanions during environmental remediation. Besides, the HCDs were proved to be sustainable Ca sources for waste/wastewater remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call