Abstract
An amplitude-modulated (AM) ultrasonic range finder using an online parameter estimation procedure is presented, which uses the sliding discrete Fourier transform (SDFT) algorithm for extracting the sinusoidal envelope from the received reference and ultrasonic signals. The received ultrasonic envelope contains an additive noise, which resembles another sine wave whose frequency is very close to that of the envelope. This gives rise to a low-frequency beat in the phase shift between the transmitted and received envelopes. Consequently, the estimated phase shows an equivalent phase jitter. The desired sinusoidal envelope signal cannot easily be separated from the noise signal, even by sharply tuned SDFT filters with phase-locked loops (PLLs). A parameter estimation procedure has been applied to remove these interharmonic signals with the help of comb filters. The PLL was strengthened by a cosine lookup table (LUT). By locating the envelope frequency far away from the interharmonic noise frequency, the convergence time could greatly be reduced. Simulation studies were conducted in the Matlab-Simulink-DSP builder environment, and ideas were implemented in a Cyclone-II field-programmable gate array (FPGA)-based range finder fabricated in the laboratory. The test results of the AM ultrasonic range finder are presented to show its performance for static and slowly moving objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.