Abstract

Transformation of pluripotent stem cells into cardiac tissue is the hallmark of cardiogenesis, yet pro-cardiogenic signals remain partially understood. Preceding cardiogenic induction, a surge in CXCR4 chemokine receptor expression in the early stages of stem cell lineage specification coincides with the acquisition of pre-cardiac profiles. Accordingly, CXCR4 selection, in conjunction with mesoderm-specific VEGF type II receptor FLK-1 co-expression, segregates cardiogenic populations. To assess the functionality of the CXCR4 biomarker, targeted activation and disruption were here exploited in the context of embryonic stem cell-derived cardiogenesis. Implicated as a cardiogenic hub through unbiased bioinformatics analysis, induction of the CXCR4/SDF-1 receptor-ligand axis triggered enhanced beating activity in stem cell progeny. Gene expression knockdown of CXCR4 disrupted spontaneous embryoid body differentiation and blunted the expression of cardiogenic markers MEF2C, Nkx2.5, MLC2a, MLC2v, and cardiac-MHC. Exogenous SDF-1 treatment failed to rescue cardiogenic-deficient phenotype, demonstrating a requirement for CXCR4 expression in mediating SDF-1 effects. Thus, a pro-cardiogenic signaling role for the CXCR4/SDF1 axis is herein revealed within pluripotent stem cell progenitors, exposing a functional target to promote lineage-specific differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.