Abstract

Phase Change Memory (PCM) has better scalability and smaller cell size comparing to DRAM. However, further scaling PCM cell in deep sub-micron regime results in significant thermal based write disturbance (WD). Naively allocating large inter-cell space increases cell size from 4F 2 ideal to 12F 2 . While a recent work mitigates WD along word-lines through disturbance resilient data encoding, it is ineffective for WD along bit-lines, which is more severe due to widely adopted $\mu$Trench structure in constructing PCM cell arrays. Without mitigating WD along bit-lines, a PCM cell still has 8F2, which is 100% larger than the ideal. In this paper, we propose SD-PCM for achieving reliable write operations in super dense PCM. In particular, we focus on mitigating WD along bit-lines such that we can construct super dense PCM chips with 4F 2 cell size, i.e., the minimal for diode-switch based PCM. Based on simple verification-n-correction (VnC), we propose LazyCorrection and PreRead to effectively reduce VnC overhead and minimize cascading verification during write. We further propose (n:m)-Alloc for achieving good tradeoff between VnC overhead minimization and memory capacity loss. Our experimental results show that, comparing to a WD-free low density PCM, SD-PCM achieves 80% capacity improvement in cell arrays while incurring around 0-10% performance degradation when using different (n:m) allocators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call